5 pts. Each Decimals OK

Name: _

Math 180 - Homework #6

Write the ANSWERS ONLY on this page. Do your calculations/work elsewhere, then NEATLY transfer your answers to this page.

- 1. The price of a watch is given by: $\mathbf{p} = 40 (0.01)\mathbf{x}$. The cost of
manufacturing those watches is: $\mathbf{C}(\mathbf{x}) = 2000 + 15\mathbf{x} + (0.02) \mathbf{x}^2$. How
many watches should the company make to maximize its profit? What
will that maximum profit be? What price should the company charge for
each watch? (Note: This problem will have decimals for the answers.
Just round to the nearest watch and the nearest penny for profit and price.)# Watch
Profit:
Profit:
Price/w
- 2. A calculator company calculates the price it should charge for its calculators is: $\mathbf{p}(\mathbf{x}) = 60 (0.002)\mathbf{x}$. It further calculates the cost of manufacturing those calculators is: $\mathbf{C}(\mathbf{x}) = (0.003)\mathbf{x}^2 + 30\mathbf{x} + 25,000$. Calculate the calculator company's maximum profit, the ideal number of calculators to sell and the best price to charge for each calculator.
- 3. A liquid form of penicillin manufactured by a pharmaceutical firm is sold in bulk at a **price of \$200 per unit**. If the total production cost (in dollars) for x units is: $C(x) = 500,000 + 80x + 0.003x^2$, and if the production capacity of the firm is at most 30,000 units in a specified time, how many units of penicillin must be manufactured and sold in that time to maximize the profit?
- 4. A rectangular plot of land is to be fenced in using two kinds of fencing. Two opposite sides will use heavy-duty fencing selling for **\$3 a foot**, while the remaining two sides will use standard fencing selling for **\$2 a foot**. What are the dimensions of the rectangular plot of greatest area that can be fenced in at a **cost of \$6000**?
- A chemical manufacturer sells sulfuric acid in bulk at a price of \$100 per unit. If the daily total production cost in dollars for x units is: C(x) = 100,000 + 50x + 0.0025x², and if the daily production capacity is at most 7000 units, how many units of sulfuric acid must be manufactured and sold daily to maximize the profit?
- 6. A firm determines that x units of its product can be sold daily at p dollars per unit where x = 1000 p. The cost of producing x units per day is C(x) = 3000 + 20x. (Hint: FIRST solve x = 1000 p, for p in terms of x)
 - (a) Find the revenue function, R(x).
 - (b) Find the profit function, P(x)
 - (c) Assuming that the production capacity is at most 500 units per day, determine how many units the company must produce and sell each day to maximize the profit.
 - (d) Find the maximum profit.
 - (e) What price per unit must be charged to obtain the maximum profit?
- 7. Suppose that the demand equation for a monopolist is p = 150 .02x and the cost function is C(x) = 10x + 300. Find the value of x that maximizes the profit.
- 8. The demand equation for a certain product is $\mathbf{p} = \mathbf{6} \frac{1}{2} \mathbf{x}$ dollars. Find the level of production that results in maximum revenue.

	ANSWER
	# Watches:
	Profit: \$
ſ	Price/watch: \$
.)	
	# Calculators:
	Profit: \$
1	Price/calculator: \$
rs)	# Units Penicillin:
/ ze	
	Dimensions of Plot:
t	by
r	# Units Sulfuric Acid:
ed	
	(a) $R(x) =$
	(b) $P(x) =$
у,	(c) # Units:
	(d) Profit: \$
t?	(e) Price/unit: \$
S	# Units:
ne	# Units:

Write the ANSWERS ONLY on this page. Do your calculations/work elsewhere, then NEATLY transfer your answers to this page.

		ANSWER
9.	Suppose that the demand equation for a monopolist is $\mathbf{p} = 100 \cdot .01\mathbf{x}$ and the cost function is $\mathbf{C}(\mathbf{x}) = 50\mathbf{x} + 10,000$. Find the value of x that maximizes the profit and determine the corresponding price and total profit for this level of production.	# Units:
		Profit: \$
		Price/unit: \$
10.	The price of selling knee-wrecking snowboards is $p = -\frac{1}{3}x + 4$. Calculate	Revenue: \$
	the maximum revenue from selling these knee-breakers.	
11.	Suppose a rival snowboard company has a better way to destroy your knees and sells it for a revenue of $\mathbf{R}(\mathbf{x}) = \mathbf{0.4x}^2 + \mathbf{10x} + 5$ at a manufacturing cost of $\mathbf{C}(\mathbf{x}) = \mathbf{0.5x}^2 + \mathbf{2x} + 101$. Find the maximum profit.	Profit: \$
12. Suppose that the revenue generated by selling x grams of crack is given by		
	$R(x) = -\frac{1}{5}x^2 + 200x$. Assume that R is in Euros. What is the maximum	Revenue: €
	revenue possible in this situation?	
13.	Ying Bai is the manager of a tire repair shop. She found that by charging $\mathbf{p} = -0.25\mathbf{x} + 40$ to fix a tire will maximize her revenue. What is this maximum revenue, how many tires need to be repaired to achieve this revenue and at what price per tire?	# Tires:
		Revenue: \$
		Price/tire: \$
14.	A snowmobile manufacturer is planning a new line of ski-doos. The price is dependent on the number of ski-doos sold(x), and is given as	# Ski-Doos:
	p(x) = 3432 - 11x. What is the maximum revenue that the manufacturer	Revenue: \$
	can expect, using this model for revenue? What will be the price for one ski-doo?	Price/Ski-Doo: \$
15.	A farmer wants to enclose two adjacent rectangular regions, as shown	
	below, next to a river, one for sheep and one for cattle. No fencing will be needed on the river side, but 210 m of fencing is available. What is the area of the largest region that can be enclosed?	Total Area:
		m^2

