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SUMMARY

A smoothed-aggregation-based algebraic multigrid solver for anisotropic diffusion problems is presented.
Algebraic multigrid (AMG) is a popular and effective method for solving sparse linear systems that arise
from discretizing partial differential equations. However, while AMG was designed for elliptic problems, the
case of non-grid-aligned anisotropic diffusion is not adequately addressed by existing methods. To achieve
scalable performance, it is shown that neither new coarsening nor new relaxation strategies are necessary.
Instead, a novel smoothed aggregation approach is developed that combines long-distance interpolation,
coarse-grid injection, and an energy-minimization strategy that finds the interpolation weights. Previously
developed theory by Falgout and Vassilevski is used to discern that existing coarsening strategies are
sufficient, but that existing interpolation methods are not. In particular, an interpolation quality measure
tracks “closeness” to the ideal interpolant and guides the interpolation sparsity pattern choice. While the
interpolation quality measure is computable for only small model problems, an inexact, but computable,
measure is proposed for larger problems. This paper concludes with encouraging numerical results that also
potentially show broad applicability, e.g., for linear elasticity.
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1. INTRODUCTION

Algebraic multigrid (AMG), e.g., classical AMG [1, 2] and smoothed aggregation (SA) [3, 4], is

an efficient solution method for the large, sparse linear systems that arise from discretizing partial

differential equations (PDEs). Classical multigrid methods were developed for symmetric positive-

definite (SPD) systems that arise from elliptic PDEs; however, not all elliptic PDEs are adequately

addressed by existing multigrid methods. For example, non-grid-aligned anisotropic diffusion is

known to be problematic for even simple model problems, such as 2D rotated anisotropic diffusion

defined by

− (c2 + ǫs2)uxx − 2(1− ǫ)cs uxy − (ǫc2 + s2)uyy = f, (1)

where ǫ = 0.001, c = cos(θ), s = sin(θ), and θ is the angle of rotation. When (1) is discretized with

bilinear (Q1) finite elements on a regular grid of the unit box, the results using SA are disappointing

because scalability is lost for the non-grid-aligned case (cf. Table IV), thus, motivating the search
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for a better solver. Additionally, as shown in Section 5, classical SA deteriorates further for more

real world applications. The model problems for this paper use this Q1 discretization for (1) and

three representative angles (θ ∈ {0, 3π/16, 4π/16}) that expose the basic nature of multigrid for

non-grid-aligned anisotropic diffusion.

One possibility for improvement is more robust coarsening strategies [5, 6]. For the grid-aligned

case, it is well-known [7, 8] that a robust strategy semi-coarsens in the direction of strong diffusion

and yields scalability (e.g., when θ = 0 in Table IV). These advanced coarsening strategies target

scalability by also intelligently coarsening in the non-grid-aligned case. However, this has proved to

be only a partial fix, as evidenced in Table IV where [6] is used. Additionally, as shown in Section

2.2, AMG theory [9] indicates that these existing robust coarsening strategies are sufficient for the

linear discretizations considered here.

Another robust coarsening strategy is compatible relaxation (CR) [10, 11], which has been applied

to anisotropic diffusion problems while being coupled to energy-minimizing interpolation strategies

[12, 13]. However, these two approaches, while offering improvement, also leave scalability for the

non-grid-aligned case unresolved.

Geometric multigrid methods offer another path to scalability for some anisotropic problems.

One such possibility is an approach [14] for non-elliptic and singular perturbation problems, which

uses a related, but geometric, strategy to that used here. In both cases, the weak approximation

property [15], which roughly stipulates that the accuracy of interpolation for a fine-grid eigenmode

must be proportional to the corresponding fine-grid eigenvalue, is quantified and used to pinpoint

that interpolation must be improved. The approach [14] goes further by quantifying how aliasing

algebraically oscillatory modes on the fine grid to algebraically smooth modes on the coarse grid

is detrimental. Additionally, the detrimental effects of characteristic modes that are significantly

smoother in the direction of strong diffusion than in the direction of weak diffusion are identified

and mitigated.

Another geometric possibility is line relaxation, and in the algebraic setting, it is also possible

to construct “lines” based on a strength-of-connection concept. Additionally, the work [16]

shows improved performance for model non-grid-aligned anisotropic diffusion problems. The

geometric-based strength-of-connection concept, associated residual transfer operators, and coarse-

grid operators that match the amount of viscosity on the fine grid are shown to be effective.

In particular, one iteration of the geometric full multigrid cycle exhibits textbook efficiency for

a fixed grid size by reducing the algebraic error to the level of discretization error. However,

because the focus of this paper is on purely algebraic methods, and because of the difficulty of

effectively parallelizing line smoothers, these options are not considered. Yet another geometric

option is AMGe [17], which exhibits improved performance for anisotropic problems, but requires

availability of element stiffness matrices, which is not presumed here.

Thus, the current state does not provide an algebraic and scalable scheme for non-grid-aligned

anisotropic diffusion. Given the broad need for such solvers (e.g., Poisson operators on stretched

meshes [18] and computational fluid dynamics [19, 20]), this paper explores a promising new

direction. Scalable multigrid relies on the complementary relationship between relaxation and

interpolation. Therefore, the lack of scalability must be the result of some combination of inadequate

relaxation, coarsening, or interpolation. Given that existing AMG theory indicates (cf. Section 3)

that existing advanced coarsening strategies are sufficient, improving coarsening is not pursued.

Additionally, since line relaxation, as mentioned above, is impractical, this paper instead focuses

on improving interpolation, with the following specific contributions. A measure [9] used here

tracks “closeness” to the ideal interpolant and quantifies the poor quality of existing interpolation

methods. This measure is then used to guide the choice for the interpolation sparsity pattern.

While the interpolation quality measure is only computable for small model problems, an inexact,

but computable, measure is proposed for general problems. The result is a novel long-distance

interpolation approach, coupled with coarse-grid injection, where the interpolation weights are

determined by the energy-minimizing prolongation smoother [13]. Once the ideal interpolant is

adequately approximated, the numerical results indicate that improved interpolation is sufficient for
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scalability when using linear discretizations. In other words, neither relaxation nor coarsening need

improvement.

In Section 2, a brief overview of SA is given. In Section 3, it is shown that existing coarsening

strategies are sufficient. In Section 4, the new interpolation strategy is motivated and then specified.

In Section 5, supporting numerical results are given. In Section 6, future work is discussed and, in

Section 7, concluding remarks are made.

2. SMOOTHED AGGREGATION OVERVIEW

An overview of SA is now given. The presentation follows standard SA, but uses newer techniques

such as the energy-minimizing prolongation smoother [13] and the strength measure [6]. Also, a

root node perspective is employed to induce coarse-level injection.

Generally speaking, multigrid automatically constructs a hierarchy of coarse sets of degrees-

of-freedom and interpolation operators. When relaxation and interpolation are complementary,

i.e., when interpolation is accurate for modes that are slow to be reduced by relaxation, rapid

convergence occurs. The low energy (or algebraically smooth) error left by relaxation is accurately

interpolated to the next coarser level, where it is effectively reduced. Optimality occurs when this

procedure is made recursive, with a coarsest level of trivial size.

Here, standard V-cycles are used for the recursive solve phase. First, pre-smoothing (e.g., Gauss-

Seidel or weighted Jacobi) occurs on the finest level to reduce high energy error. The residual

equation is then interpolated to the first coarse level and solved recursively. The recursive process

halts once the coarsest level has been reached, and a direct solve is done. The fine-level solution

is then updated using the interpolated error correction from the coarse level. Finally, a step of post-

smoothing occurs.

The SA setup phase is outlined in Algorithm 1. Level 0 is the finest level; Pℓ denotes prolongation

from level ℓ+ 1 to level ℓ; P ∗

ℓ denotes restriction from level ℓ to level ℓ+ 1; and Aℓ is the operator

on level ℓ. Subscripts are dropped when the discussion is invariant to the level. SA begins with a set

of user-provided near-null-space modes, B0, which are typically null-space modes of the governing

PDE without boundary conditions, and are, thus, only rough representations of the true near-null-

space of the linear system. For example, B0 is the constant for diffusion and the rigid-body-modes

for elasticity. Therefore, B is pre-smoothed in Algorithm 1 for improvement, especially near the

domain boundaries.

Next, the coarse-grid is constructed by aggregation, which corresponds to a non-overlapping

covering, N , of the matrix graph, i.e., each vertex is assigned to an aggregate, typically through

a greedy procedure. The graph of A may be used, but it is more robust to use the graph of a

strength-of-connection matrix S. The matrix S is based on A, but reflects the removal of entries

(i, j), between which algebraically smooth error cannot be well-approximated with B [6]. The (i, j)
that are removed are dubbed weak connections and those that remain are dubbed strong connections.

Aggregation is then used to induce a tentative prolongation, T , that exactly interpolates B with

TℓBℓ+1 = Bℓ. This is achieved by injecting B into the aggregation pattern, N , i.e.,

Tℓ =











Q(1) 0 . . .

0 Q(2) 0 . . .
. . .

. . . 0 Q(k)


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





, Bℓ+1 =











R(1)

R(2)

...

R(k)











, (2)

where k is the total number of aggregates, B(i) is the submatrix of Bℓ obtained by taking only rows

assigned to the ith aggregate and B(i) = Q(i)R(i) via a QR factorization. Thus, T is block diagonal,

where the blocks correspond to only those degrees-of-freedom within an aggregate.

Prolongation smoothing then produces P by improving T with the goal of making span(P )
more accurate for low energy modes. As a result, the sparsity pattern of P is typically expanded

from the block diagonal form in (2). Classical SA uses one iteration of weighted Jacobi, i.e.,

P = (I − ωD−1A)T . Here, a more sophisticated energy-minimization procedure is used to smooth
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T , and is outlined in Section 2.1. Finally, Galerkin coarsening is used to construct the operator for

the next coarse level.

Algorithm 1: sa setup(A0 , B0)

1 for ℓ = 0 to ℓmax do

2 smooth β times on AℓBℓ = 0

3 Sℓ = strength(Aℓ)
4 Nℓ = aggregate(Sℓ)
5 Tℓ, Bℓ+1 = inject modes(Nℓ, Bℓ)

6 Pℓ = energy min(Aℓ, Tℓ)

7 Aℓ+1 = P ∗

ℓ AℓPℓ

8 return A0, . . . , Aℓ, P0, . . . , Pℓ−1

2.1. F/C-Based Energy-Minimization Prolongation Smoothing

This section outlines the energy-minimizing prolongation smoother used here. To begin, the root

node perspective is presented, which induces an F/C-style P . This perspective views each aggregate

as being centered around a node, and then constructs a P that injects from a coarse-level node to

this fine-level root node. The root node of an aggregate is the seed node chosen during the greedy

aggregation algorithm when constructing that aggregate. The root nodes and non-root nodes are

analogous to the C-points and F -points, respectively, from classical AMG. Such a P is easily

constructed. First, take T and scale each column so that the entry corresponding to each root node

row is one. Second, to preserve exact interpolation, TℓBℓ+1 = Bℓ, Bℓ+1 must be scaled accordingly

to equal injection 2 of Bℓ. Finally, the smoothing of T only occurs for non-root node rows (i.e.

F -rows), thus, yielding a P that can be row-permuted to the F/C-style sparsity pattern, where I
denotes coarse-grid injection,

P =

ï

PF

I

ò

. (3)

A brief description of the energy-minimizing prolongation smoother, as used here, is now given.

For more details, see [13]. Since A is SPD, projected CG is used to compute

argmin
P∈V

∑

j

||P(j)||
2
A, (4)

where P(j) is the jth column and V is a Krylov subspace over which two constraints are enforced:

PℓBℓ+1 = Bℓ and a sparsity pattern constraint. V̌ has the form

{X(I ⊗A)Ť , (X(I ⊗A))2Ť , . . . }, (5)

where the ˇoperator denotes column-wise conversion of a matrix to a column-vector, e.g., Ť =
[T T

(1) T
T
(2) T

T
(3) . . . ]

T and T(j) denotes the jth column of T . The identity matrix, I , has size equal to

the coarse-grid size and the projection operator, X , enforces the constraints.

The projection, X , enforces the near-null-space preservation constraint, PℓBℓ+1 = Bℓ, as follows.

The initial interpolation guess, T , satisfies the near-null-space constraint by construction (see

equation (2)). Thus, the purpose of X is to ensure that this property is not perturbed, i.e., that

all subsequent updates, U ∈ V , to T satisfy UℓBℓ+1 = 0. To accomplish this, the action of X when

applied to some U essentially right multiplies only the allowed nonzero portion of the ith row by

the ℓ2-projection (I −B(i)((B(i))∗B(i))−1(B(i))∗). The submatrix B(i) is obtained from Bℓ+1 by

taking only the rows assigned to the allowed nonzero pattern of this ith row. The importance of

enforcing this accurate interpolation of certain known low-energy mode(s), most commonly the

2It is assumed here that B0 has only one column. For a discussion of the multiple column case, see Section 6.2.
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constant, is a common feature of multigrid interpolation, e.g., classical AMG, and classical SA, and

is similarly important here for the overall success of energy-minimization.

The projection, X , enforces the sparsity pattern constraint by zeroing out those entries not present

in the graph of
ï

(|S|d|T |)F
I

ò

, (6)

where d ∈ {1, 2, . . .}, | · | denotes an element-wise absolute value and (·)F represents restriction to

F -rows. By increasing d, the sparsity pattern grows in the direction of strong connections and coarse-

grid injection is preserved. This flexibility for larger sparsity patterns is crucial to the success of the

proposed approach. Typically, 2d iterations of the energy-minimization process are taken, with the

complexity of the whole process on the order of classical prolongation smoothing [21], P = pd(A)T ,

where pd(A) is a dth degree polynomial in A constructed to reduce energy, e.g., Chebyshev.

An important difference with classical prolongation smoothing is that the near-null-space modes

are exactly incorporated into span(P ). On account of this, the near-null-space modes are pre-

smoothed in Algorithm 1, so that inaccuracies, especially near the boundaries, are alleviated. For

many problems, this pre-smoothing of the near-null-space is unnecessary, but note that for the case

of the Helmholtz problem [22] and some 3D elasticity problems, pre-relaxing B is beneficial.

2.2. Benefits of the F/C-Based Approach

The F/C-based approach has some attractive properties. The identity block in (3) guarantees that the

columns of P are linearly independent, which is important during the energy-minimization process.

Moreover, the ideal P (cf. [9]) for (3) is given by

Pideal =

ï

−A−1
FFAFC

I

ò

, (7)

where AFF corresponds to F -rows and F -columns of A, and AFC corresponds to F -rows but C-

columns. Intuitively, Pideal has “zero” energy at F -points because APideal is zero at all F -rows.

Equation (7) also importantly indicates that the F/C approach yields an energy-minimization

process that is better conditioned than for the non-F/C approach. With the F/C approach,

(7) implies that the energy-minimization process essentially solves AFFPF = −AFC column-

wise, subject to the constraints. On the other hand, the non-F/C approach induces an energy-

minimization process that essentially solves AP = 0 column-wise, subject to the constraints. Since

AFF is generally better conditioned than A, it is clear that the F/C approach yields a better

conditioned energy-minimization problem. Moreover, as discussed next in equation (8), acceptable

F/C splittings are defined by requiring that the induced AFF is well-conditioned.

Last, we consider two useful theoretical measures from [9] that apply only in the F/C setting. For

a more detailed discussion, see [9]. Define M to be the preconditioner for A provided by a simple

relaxation method, e.g., the diagonal of A in the case of Jacobi, with MFF representing restriction

to F -rows and F -columns. Then the quantity

ρcr =
∥

∥I −M−1
FFAFF

∥

∥

AFF

(8)

measures the quality of the coarse grid (i.e., the F/C splitting) by measuring the convergence of

F -point relaxation. Compatible relaxation (CR) [10, 11] methods are based on estimating ρcr and

other similar quantities. Small ρcr values, e.g., in the range 0.1–0.6, are desirable and indicate a

good F/C splitting and a well-conditioned AFF .

Another quantity measures interpolation quality. Let Q = PR̃ be an oblique projector, where P is

the multigrid prolongation operator of the form (3) and R̃ is injection at root nodes, so that R̃P = I .

Then the quantity η, which is defined by the smallest such value that satisfies

〈AQe, Qe〉 ≤ η 〈Ae, e〉 , ∀e, (9)

is bounded below by 1 and measures the quality of P . Intuitively, an η ≈ 1 implies that an

algebraically smooth fine-grid eigenmode is represented on the coarse grid in proportion to the

corresponding fine-grid eigenvalue.
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When combined such that ρcr is small and η is order one (e.g., 2 or 3), AMG theory [9] informs

us that the resulting two-level method is effective. As a multilevel heuristic, ensuring a good two-

level method is often sufficient and, thus, we use ρcr and η to next determine that interpolation, not

coarsening, must be improved.

3. SUITABLE COARSENING FOR NON-GRID-ALIGNED ANISOTROPIES

In this section, we argue that existing advanced coarsening strategies are sufficient for scalable

multigrid performance. It is well-known [7, 8] that semi-coarsening for the case of (nearly) grid-

aligned anisotropic diffusion produces scalable multigrid solvers. For the case of non-grid-aligned

anisotropic diffusion, previous results are less clear, but we argue here that aggregates that generally

track the direction of the anisotropy, but that do not semi-coarsen, are sufficient. Existing advanced

coarsening strategies [5, 6] already accomplish such aggregation. Here, the strength measure [6] is

used with an appropriate drop-tolerance of 4.0, unless otherwise noted.

As an example, consider the model problem case of θ = 3π/16 with corresponding generic

strength stencil shown in Figure 1. Solid lines represent a strong connection. Degree-of-freedom i is

Figure 1. Generic strength-of-connection stencil for θ = 3π/16.

strongly connected in two directions, vertically and diagonally from the lower-left to the upper-right.

Two typical aggregates for this case are shown in Figure 2 as the shaded regions, which contain the

square nodal locations. The two large black squares are the root-nodes of each aggregation, with the

smaller squares represnting the “F -point” members of each aggregate. Essentially, the “smearing”

in the aggregate shapes reflects the “smearing” in the matrix stencil.

Figure 2. Two typical aggregates for θ = 3π/16.

We now use ρcr to quantify the fact that this aggregation strategy is sufficient. Table I depicts

ρcr values on the finest level for the model problems discretized on a 61× 61 grid, with ρcr
values on coarse levels being similar. We immediately notice that, for the rotated cases, the ρcr
value is actually smaller, thus, indicating a better F/C splitting than for the grid-aligned case,

which is known to produce a scalable multigrid solver. Thus, we conclude that existing strength-

of-connection measures are sufficient for scalable multigrid, at least when considering bilinear (or

similar) discretizations.

θ 0 3π/16 4π/16

ρcr 0.44 0.27 0.29

Table I. Exact values for ρcr, model rotated anisotropic diffusion.
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4. SUITABLE INTERPOLATION FOR NON-GRID-ALIGNED ANISOTROPIES

In this section, an improved strategy for constructing P for non-grid-aligned anisotropies is

motivated. The other possible means of improving SA, better coarsening or relaxation, are not

explored, for the reasons previously discussed. Key to the proposed strategy are long-distance

interpolation stencils, which are defined as expanding the sparsity pattern for P with d > 1 (typically,

d ∈ {2, 3, 4, 5}).

As an example, Figure 3 visually depicts for θ = 3π/16 how the sparsity pattern expands for a

generic aggregate in the center of the domain. The large completely black square denotes the root

node of the aggregate, and for the d = 2 and 3 cases, the large, but hollow, black squares represent

other root nodes excluded from the sparsity pattern. The nonzero pattern is depicted by the shaded

area. When d = 0, the nonzero pattern represents that of the tentative prolongator, T . When d = 1,

the sparsity pattern is that achieved for standard filtered prolongation smoothing. When d > 1, the

sparsity pattern uses long-distance connections.

Figure 3. Letting θ = 3π/16, sparsity pattern for generic aggregate, from left to right d = 0, 1, 2, 3.

The need for long-distance interpolation is now quantified. Table II shows η values on the finest

level for the model problems discretized on a 61× 61 grid over various values of d. As d increases

for the non-grid-aligned cases, the η values decrease until they reach the goal of being order 1 and

then stagnate (remember that the optimal η is 1). Once this occurs, a scalable SA solver is achieved,

which is denoted by the gray shading. Scalability depends on the level of approximation of Pideal by

P , regardless of θ. If standard weighted Jacobi is used to smooth P , the results are similar to d = 1.

Since d = 4 or 5 is the most robust value and is effective for each θ, it becomes the standard choice

in the results section.

The η values on coarse levels are similar to Table II, except for θ = 3π/16, where η stagnates

at approximately 16 on the first coarse level. This may be an indicator why the convergence factor

changes from 0.12 to 0.15 for this angle in Table V.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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θ / d 1 2 3 4 5

0 1.0 1.0 1.0 1.0 1.0

3π/16 130 21 4.2 1.1 1.1

4π/16 140 92 28 1.7 1.7

Table II. Exact values for η, model rotated anisotropic diffusion.

In conclusion, this strategy is similar to that employed by sparse approximate inverses (SPAI)

[23], where the allowed nonzero pattern is expanded in the direction of large coefficients in order

to improve the sparse approximation. Here, the sparse approximation is for PF ≈ −A−1
FFAFC .

Additionally, the use of η to evaluate the closeness of P to Pideal, and, thus, expand the sparsity

pattern until an acceptable level of closeness is achieved, is a specific contribution of this paper.

4.1. Visual Motivation

To further the motivation, columns of P are visually compared for isotropic diffusion, θ = 3π/16,

and θ = 0 over various prolongation settings. The column of P that corresponds to the aggregate

with root node located in the center of the domain is plotted and normalized such that the largest

entry is 1. The small negative entries that exist when θ = 3π/16 for Pideal and d = 4 have also

been dropped for plotting purposes. The four different prolongation settings examined are Pideal,

the energy-minimizing prolongation smoother for both d = 1 and 4, and the energy-minimizing

prolongation smoother without coarse-grid injection for d = 4, i.e., the identity block in (6) is

replaced by the sparsity pattern defined by the C-rows, (|S|d|T |)C . The plotted columns of Pideal

are dense, although this is difficult to visually discern because the plotted values approach zero as

distance from the center point increases. This is especially true for the case of θ = 0.

Figure 4 demonstrates that the columns of Pideal become less local for the rotated anisotropic case,

lending support to expanding the sparsity pattern of P . Figure 5 demonstrates that d = 4 produces a

P that visually has the character of Pideal. There is a constant-like relationship in strong directions,

but not in the weak directions. Figure 6 depicts d = 1, where the nonzeros of P are similar to the

corresponding locations for d = 4, thus, indicating that the expanded sparsity pattern of d = 4 is a

key reason for its superior performance. Figure 7 depicts d = 4 without coarse-grid injection. Here,

the resulting columns of P no longer resemble the corresponding columns of Pideal. Experiments

also confirm that not enforcing coarse-grid injection results in deteriorated SA performance.

Figure 4. Normalized columns of Pideal for generic aggregate.

4.2. Complexity

A primary concern about the proposed approach is the complexity, where attention must be paid to

which aggregation or F/C splitting technique is used. For instance, geometric semi-coarsening by

three for the angle of θ = 3π/16, while using the strength-of-connection scheme utilized in Figure

3, leads to unacceptably high complexities because of the slow coarsening coupled with a relatively

dense P . However, this type of situation is generally avoided by SA. For SA, the coarsening rate

and the coarse matrix stencil size are always connected through the strength-of-connection matrix

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2011)
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Figure 5. Normalized columns of P for generic aggregate, d = 4.

Figure 6. Normalized columns of P for generic aggregate, d = 1.

Figure 7. Normalized columns of P for generic aggregate, d = 4 without Coarse Grid Injection.

(cf. Algorithm 1). The denser coarse matrix generated by the proposed approach typically generates

a denser strength-of-connection matrix on that coarse level, which in turn accelerates coarsening

(see Table III, where for levels 4 and 5, the coarsening rate has increased above the standard semi-

coarsening rate of three for θ = 0).
More generally, the coarse stencil size increase is balanced by the coarsening rate. To explain

this concept, we examine θ = 0, where semi-coarsening by three occurs for the first three levels,

but the stencil of P has been increased with d = 4. For instance, on level 0, a typical column of P
has 9 nonzeros (for d = 1, a typical column has only 5 nonzeros). We are interested in measuring

the impact of this denser P on complexity, and use as our metric operator complexity, i.e., the total

number of nonzeros for all matrices in the multilevel hierarchy, relative to the number of nonzeros

for the finest-level matrix. This quantity both indicates the storage cost and the cost of applying one

V-cycle, relative to the fine grid. In particular, we connect operator complexity to the increase in the

coarse matrix stencil that is induced by this denser P .

Define βℓ to be the average stencil size on level ℓ and nℓ to be the number of degrees-of-freedom

on level ℓ. Then, nℓβℓ is the number of nonzeros on level ℓ and the operator complexity, α, is

α = 1 +
1

β0n0

ℓmax
∑

ℓ=1

βℓnℓ. (10a)
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For θ = 0, we have semi-coarsening by 3 and a 9-point fine grid stencil, yielding

α =1 +
1

9n0

ℓmax
∑

ℓ=1

βℓ
n0

3ℓ
(10b)

=1 +

ℓmax
∑

ℓ=1

Ç

(βℓ)
1/ℓ

32/ℓ+1

åℓ

. (10c)

If the summation term from (10c), call it κℓ, is bounded by a κ̂ < 1, then by a geometric series

argument,

α ≤
1

1− κ̂
. (11)

The size of κℓ indicates if the coarse stencil size is too large at that level, i.e., values consistently

near 0.9 or 1.0 indicate unmanageable operator complexities. Additionally, the change in κℓ from

level to level communicates if the coarse stencil size is increasing too fast relative to the coarsening

rate, i.e., if κℓ trends towards 1, then the coarse stencil size is increasing too fast.

In Table III, we compute κℓ and observe that stencil growth is indeed slow enough to be balanced

by the coarsening rate and result in a moderate α. In fact, if one uses the table to estimate κ̂ ≈ 0.6,

then (11) implies α = 2.5, which is roughly the operator complexity observed in practice (cf. Table

V). A similar analysis can be done for θ = 3π/16 and 4π/16, where βℓ is typically larger, e.g., 75,

but the coarsening rate is commensurately faster.

For additional clarification, we also present in Table III for each level the number of degrees-of-

freedom and the percentage of the total nonzeros. This data also indicates that coarse grid storage

costs are increased for this approach, but not prohibitively.

nℓ Nonzeros βℓ κℓ

Level ℓ 0 1 046 529 45% 9

1 348 843 35% 21 0.78

2 116 622 14% 27 0.58

3 38 874 5% 26 0.48

4 4 095 1% 53 0.52

5 365 ≪ 0% 34 0.43

Table III. SA coarsening statistics, θ = 0.

Overall, the proposed approach adds to complexity, but not in an intractable way. The coarse grid

stencil growth does not outstrip the coarsening rate, thus, resulting in higher, but not prohibitive,

operator complexities for the model problems. Additionally, larger coarse grid stencils eventually

induce more aggressive coarsening on coarse levels, as shown in Table III for levels 4 and 5. We

remark, however, that larger coarse grid stencils are problematic in some settings, most notably in

parallel.

5. RESULTS

Numerical evidence is now provided that the proposed strategy yields a robust solver. V(1,1)-cycles

with symmetric Gauss-Seidel and a maximum coarsest-grid size of 500 degrees-of-freedom are used

as a preconditioning in PCG with a relative residual tolerance of 10−8. P is computed with d = 4
or 5. The near-null-space mode is B0 = 1. All experiments are carried out in the software package

PyAMG [24].

First, results for classical SA applied to the model problem (1) are shown in Table IV. The

strength-of-connection drop-tolerance has been tuned for each selected θ and filtered prolongation

smoothing has been used, making the results a best case scenario for classical SA. The quantity γ
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is the residual reduction factor, i.e., the factor by which the residual is reduced each PCG step. “Op.

Comp.” is the operator complexity and “Work” refers to the work per digit-of-accuracy, e.g., 6 work

units indicates work equal to 6 finest-level matrix-vector products in order to reduce the residual

by one order of magnitude. Scalability only occurs for (nearly) grid-aligned anisotropy (e.g., when

θ = 0). Scalability is achieved when work does not increase with the matrix size. The three regular

grids examined are 511× 511, 1023× 1023 and 2047× 2047.

θ 0 3π/16 4π/16
Grid 1 2 3 1 2 3 1 2 3

γ 0.05 0.05 0.05 0.49 0.53 0.55 0.35 0.40 0.45
Op. Comp. 1.5 1.5 1.5 1.4 1.4 1.4 1.8 1.8 1.8

Work 5 5 5 18 20 22 16 18 21

Table IV. Classical SA results, model rotated anisotropic diffusion.

Table V depicts the results for the model problems using the proposed approach. The operator

complexity is reported to reassure the reader, as indicated in Section 4.2, that the large coarse-grid

stencils do not create an unusable method. For the problems considered here, the complexity is

tolerably high, i.e., 2–2.5. Overall, the results indicate that γ and work are (nearly) scalable for all

θ.

θ 0 3π/16 4π/16
Grid 1 2 3 1 2 3 1 2 3

γ 0.05 0.05 0.05 0.12 0.14 0.15 0.20 0.20 0.20
Op. Comp. 2.2 2.2 2.2 2.4 2.4 2.4 2.1 2.1 2.1

Work 7 7 7 10 11 11 13 13 13

Table V. SA results, model rotated anisotropic diffusion.

Table VI shows results for 2D isotropic diffusion discretized with linear triangular elements on

a stretched mesh. The mesh is an unstructured triangulation of the unit circle that, later, has the y-

coordinates stretched by a factor of 100, thus, yielding non-grid-aligned anisotropic behavior. The

stretching of various meshes is depicted in Figure 8. The matrix dimensions for each grid size are

13 373, 53 069, 217 143, and 869 261. Table entries are presented as a (b), representing quantities

when using energy-minimization and standard weighted Jacobi, respectively. Scalability is observed,

while standard prolongation smoothing struggles.

grid # 1 2 3 4

γ 0.27 (0.55) 0.30 (0.64) 0.35 (0.71) 0.34 (0.78)

Work 16 (22) 19 (29) 22 (39) 21 (53)

Op. Comp. 2.4 (1.4) 2.5 (1.5) 2.5 (1.5) 2.5 (1.4)

Table VI. SA results, isotropic diffusion on stretched unit circle, entries refer
to experiments with the proposed P and weighted Jacobi, respectively.

Table VII depicts the results for 1D radiation transport mapped to spherical coordinates, which

yields the 2D problem

b · ∇u+ σu = f, (12)

where b(x, y) = [xy, 1− y2] and 1/σ represents the mean free path between collisions. Here, the

domain is [0, 1]× [−1, 1] and σ = 10−6, indicating almost no collisions. The discretization used

is Q1 finite elements with FOSLS (first-order system least squares) [25]. FOSLS yields a matrix

that has the dominant differential term of rotated anisotropic diffusion defined by −∇ · [bT
b]∇,
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Figure 8. Stretched circular meshes, from left to right, stretch factors are 1, 5 and 100.

in addition to some lower-order terms. Four grid sizes are examined: 256× 512, 512× 1024,

1024× 2048, and 2048× 4096. Given the difficulty of this problem, W-cycles are used to enhance

scalability. Standard prolongation smoothing again struggles, while the proposed approach is

(nearly) scalable.

grid # 1 2 3 4

γ 0.40 (0.64) 0.42 (0.70) 0.44 (0.76) 0.45 (0.81)

Work 71 (45) 77 (58) 83 (74) 84 (93)

Op. Comp. 2.5 (1.4) 2.4 (1.4) 2.4 (1.4) 2.4 (1.4)

Table VII. SA results, radiation transport, entries refer to experiments
with the proposed P and weighted Jacobi, respectively.

Figure 9 depicts the lines of strong diffusion for the transport problem, which curve through the

domain in a U-shaped pattern. Next, Figure 10 shows how aggregation follows the direction of this

anisotropy. The aggregation is depicted over only the lower half of the domain, but the upper half

is a mirror image. The aggregates are depicted as geometric shapes (lines or polygons), while the

nodal locations are small squares. The blow-up of the aggregate shows a 3D plot of that aggregate’s

corresponding column in P , which curves according to the direction of the anisotropy.

While the proposed solver enjoys good performance for linear discretizations, discretizing the

transport problem with biquadratics exposes some limitations. For instance, Table VIII depicts such

results. The proposed solver outperforms classical prolongation smoothing, but does not exhibit

scalable performance.

grid # 1 2 3 4

γ 0.70 (0.84) 0.75 (0.88) 0.79 (0.91) 0.83 (0.94)

Work 111 (110) 146 (153) 178 (208) 220 (269)

Op. Comp. 2.0 (1.3) 1.9 (1.3) 1.9 (1.3) 1.9 (1.3)

Table VIII. SA results, radiation transport, biquadratic discretization, entries refer
to experiments with the proposed P and weighted Jacobi, respectively.
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Figure 9. Lines of strong diffusion for transport problem.

Figure 10. Aggregates for transport problem, with blow-up of selected column of P .

6. FUTURE WORK

6.1. A Computable η

A drawback of this approach is that exact computation of η requires dense eigenvalue

decompositions. For anisotropic diffusion, this is surmountable, because we examine small, simple

model problems that exhibit the desired behavior. These model problems, then, give the insight

needed to construct a robust solver for real world applications. However, this is not always the case,

which leads us to develop a computable approximation η̂.
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Let Q be the oblique projector from before. Then, the definition of η from equation (9) is

equivalent to the generalized eigenvalue problem

η = λmax for QTAQe = λAe (13a)

A−1QTAQe = λe. (13b)

By substituting in the approximation to A−1 given by one or two multigrid V-cycles (call it Â−1),

we arrive at the approximation, η̂, given by

η̂ = λmax for Â−1QTAQe = λe. (13c)

Importantly, η̂ is the maximum eigenvalue of an operator whose action is efficiently represented

as a sequence of matrix-vector products, followed by application of one or two V-cycles. Thus, an

iterative procedure, such as Arnoldi, is used to approximate η̂.

Experimentally, η̂ agrees with η for 2–3 decimal places for the model problems. Additionally, η̂
behaves as we expect for the transport problem, i.e., it is reduced as d is increased, until finally

stagnating at a value that is order one. Table IX presents η̂ values for the first three levels in the

hierarchy for the 256× 512 grid. Interestingly, the data indicates that reducing η̂ on all levels is

d 1 2 3 4 5

Level 0 3.4 2.4 2.2 2.2 2.1
1 15 5.9 1.8 2.0 1.7
2 25 2.6 2.6 1.7 1.4

Table IX. Values for η̂ for the transport problem.

important. It is not until η̂ is small on the first three levels that SA performance shows scalability.

Computationally, η̂ is a feasible diagnostic tool, but it is still an expensive one. For the results in

Table IX, 50–100 Arnoldi iterations were required.

In addition to the experimental evidence, there is also a heuristic argument as to why using a

V-cycle approximation to A−1 is reasonable. Equation (13c) is equivalent to the eigenvalue problem

for the transpose,

η̂ = λmax for QTAQÂ−1e = λe. (14a)

Then, using the fact that the projector QQ = Q, we arrive at

(QTAQ)(QÂ−1)e = λe. (14b)

The action of Â−1 is being projected onto span(Q), meaning that Â−1 must be accurate for those

modes lying in span(P ). This is, of course, precisely what a 2-level multigrid cycle does by

providing an energy optimal coarse-grid correction in span(P ). Yet, since the V-cycle used here

is multilevel, the coarse-grid correction is not generally optimal and we expect some degradation

in approximating η. However, experimental evidence suggests that this degradation is small for the

problems considered here.

Use of η̂, in conjunction with existing computable approximations to ρcr available through

CR, allow the solver design strategy of this paper to be applied to general problems. The quality

of interpolation is gauged with η̂, while the quality of the F/C splitting is gauged with ρcr
approximations obtained with CR. While the cost of CR is problem dependent, it is important to

note that this cost can be high, especially if the F/C splitting produces a poorly conditioned AFF

block. The focus of future work is on further reducing the computational cost of η̂ and also on

verifying the utility of η̂ for a broader range of test problems.
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6.2. Allowing for Arbitrarily Many Vectors in B

A potential drawback of this approach is that, when using coarse-grid injection, the number of

functions fitted over each aggregate during the construction of T (see (2)) must equal the supernode

size 3. For 3D elasticity and diffusion, supernodes are typically of size three and one, respectively,

thus, allowing for three and one functions over each aggregate, respectively.

This restriction comes about in the following way. The QR procedure described in (2) effectively

sets the number of degrees-of-freedom per node on the coarse level to equal the number of near-

null-space modes. This means, however, that there is not necessarily a one-to-one correspondence

between coarse- and fine-grid degrees-of-freedom. Thus, when the number of near-null-space modes

is not equal to the number of degrees-of-freedom per supernode on the fine grid, then it is not

possible to simply normalize columns so that a root node entry has a value of one. In other words,

some columns do not correspond to a unique root node entry.

Classical SA has no such restriction on the number of near-null-space modes. For instance, with

3D elasticity, the six rigid-body-modes are typically fit over each aggregate, i.e., three displacements

and three rotations. However, the proposed approach automatically compensates for this potential

drawback. To show this, an elasticity experiment is run with B0 equal to the three displacements.

Then, e is computed, which measures how well span(P ) approximates the rotational rigid-body-

modes. Let

e =
∑

i=1,2,3

‖(I − P (PTP )−1PT )B̂(i)‖

‖B̂(i)‖A
, (15)

where B̂(i) is the ith rotation and P is taken from the finest level. Thus, e represents how well

span(P ) approximates B̂ in terms of the weak approximation property.

The test problem is isotropic linearized elasticity defined by

− div
(

λ tr
((

∇u+∇u
T
)

/2
)

I + µ
(

∇u+∇u
T
))

= f, (16)

where λ and µ are the Lamé parameters, I is the identity matrix and tr() is the trace function. The

GetFem++ package [26] is used to discretize a tripod with a downward force applied to it, using

tetrahedra and linear basis functions. An example coarse mesh is depicted in Figure 11. P has

dimensions 16 341× 1 347 and the experiment is run with various d and, for comparison, weighted

Jacobi. Table X depicts these results.

Figure 11. Example coarse tripod mesh.

As d increases, both γ and e improve, but at the cost of a higher operator complexity. For

comparison, use of classical SA and all six rigid-body-modes in B0 yields a solver with γ = 0.15,

3A common SA approach when multiple variables exist at each spatial location for the original matrix problem is
supernodes [4]. Supernodes cause aggregation to happen in two stages at the finest level. First, supernodes are formed
by aggregating degrees-of-freedom at the same spatial location together. Second, strength-of-connection information is
used to aggregate the supernodes.
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Prol. Smoother: w-Jacobi d = 1 d = 2 d = 3 d = 4 d = 5

e 1.1e-1 6.4e-2 4.0e-2 2.7e-2 2.0e-2 1.7e-2

γ 0.62 0.45 0.40 0.30 0.17 0.16

Work 23 13 14 12 9 10

Op. Comp. 1.2 1.2 1.4 1.6 1.8 2.0

Table X. SA results and error in span(P ) for rotations.

an operator complexity of 1.8, and a work per digit-of-accuracy of 8. Additionally, there is

numerical evidence that d ∈ {3, 4, 5} yields scalable results for this elasticity problem. However,

more experiments are needed to confirm this result for more general problems.

Moreover, an extension of the energy-minimizing prolongation smoother is planned so that the

rotations are exactly incorporated into span(P ) through a modification of the constraints. So long

as there are enough nonzeros in each row of P , this goal is achievable.

7. CONCLUSIONS

A novel interpolation strategy of coarse-grid injection coupled with energy-minimization and long-

distance interpolation stencils is developed. For the non-grid-aligned anisotropic diffusion problems

examined with a linear discretization, the resulting solvers appear to be (nearly) scalable and are the

first such algebraic solvers known to the author. Moreover, this work indicates that neither new

coarsening nor new relaxation strategies are necessary.

Established theory for F/C-style AMG provides the tools (η and ρcr) to design the proposed

solver, by guiding the sparsity pattern choice for P and assuring us that available methods for

obtaining an F/C splitting are sufficient. Additionally, the proposed computable approximation,

η̂, appears to have practical uses and to predict scalability.
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