
LC3-1
Page 1

© 2006ECE 238L

LC3-1

The LC-3
A Review

IR

ALU

PC

AB

LC3-1
Page 2

© 2006ECE 238L

Introduction

In this class we will:

Complete the hardware design of the LC-3
Simulate it
Run programs on it and hopefully download on the
board.

LC3-1
Page 3

© 2006ECE 238L

Reference Information
You will need the LC-3 Description
Patt & Patel Textbook:

“Introduction to Computing Systems” (second edition)
Yale N. Patt & Sanjay J. Patel

McGraw-Hill Higher Education 2004

Useful Sections (in order of importance):
Appendix A
Chapter 5
Chapter 4

Or use the links supplied in the reference section of the
class webpage

LC3-1
Page 4

© 2006ECE 238L

The Von Neumann Model

Memory

MAR MDR

INPUT
* keyboard
* mouse
* scanner
* card reader
* disk

Processing Unit

ALU TEMP

OUTPUT
* monitor
* printer
* LED
* disk

Control Unit

PC IR

LC3-1
Page 5

© 2006ECE 238L

The Von Neumann Model

Memory is used to store a sequence of instructions
Memory is also used to store data
Memory Address Register (MAR) selects which
location in memory will be read or written
Memory Data Register (MDR) contains the data read
or to be written

Memory

MAR MDR

LC3-1
Page 6

© 2006ECE 238L

The Von Neumann Model

Memory

MAR MDR

0000

0001

0010

0011

0100

0101

0110

0111

1000

00011001

11010100
Memory Address

Register

...
Memory Data

Register

LC3-1
Page 7

© 2006ECE 238L

The Von Neumann Model
Arithmetic Logic Unit (ALU) does computations and
information processing (ADD, AND, NOT, etc.)
Registers (TEMP) provide a small amount of high-
speed temporary storage

Processing Unit

ALU TEMP

LC3-1
Page 8

© 2006ECE 238L

The Von Neumann Model
Control Unit (CU) determines what to do next and
controls the rest of the processor
Program Counter (PC) contains the address of the next
instruction to be executed
Instruction Register (IR) contains the current
instruction being executed

Control Unit

PC IR

LC3-1
Page 9

© 2006ECE 238L

The Von Neumann Model

Memory

MAR MDR

INPUT
* keyboard
* mouse
* scanner
* card reader
* disk

Processing Unit

ALU TEMP

OUTPUT
* monitor
* printer
* LED
* disk

Control Unit

PC IR
Not Enough Time
to Study Everything

LC3-1
Page 10

© 2006ECE 238L

The Von Neumann Model
Fetch an instruction
Execute it
Repeat

Fetch Execute

(Looks a lot like a State Graph)

LC3-1
Page 11

© 2006ECE 238L

The Instruction Set Architecture (ISA)
ISA for LC-3

Everything about the computer the software needs to know
• memory organization
• register set
• instruction set

− opcodes
− data types
− addressing modes

Everything the hardware designer needs to know in order
to build the computer

LC3-1
Page 12

© 2006ECE 238L

Memory Organization
The LC-3 is a 16-bit machine

all instructions fit into a 16-bit word
memory is accessed using a 16-bit address word

• its address space is 216 locations (65,536 locations)
memory is word-addressable

• each location is 16-bits wide (2 bytes each)
• total memory size is 131,072 bytes
• in most other machines memory is byte-addressable

− LC-3 is different in this respect

Use a 16-bit word to address memory
Get back a 16-bit value

LC3-1
Page 13

© 2006ECE 238L

Register Set
Memory access is slow(er)

it is outside the processing unit
it takes a whole instruction cycle to access (LDR)

Registers are inside the processing unit
they can be accessed during an instruction (ADD)

All computers have a register set
LC-3 has 8 general purpose registers
Named R0, R1, R2, R3, R4, R5, R6, R7
They are addressed with a 3-bit field in an instruction

LC3-1
Page 14

© 2006ECE 238L

Data Types
LC-3 has only one data type

a 16-bit 2’s complement integer

Other computers have others
32-bit floating point (float)
64-bit floating point (double)
long
short
byte

LC3-1
Page 15

© 2006ECE 238L

LC-3 Instructions
ADD 0001 DR SR1 00 SR20

ADD 0001 DR SR1 imm51

AND 0101 DR SR1 00 SR20

AND 0101 DR SR1 imm51

BR 0000 n z p PCoffset9

JSR 0100 1

JMP 1100 0 00000000 BaseR

LD 0010 PCoffset9DR

LDI 1010 PCoffset9DR

LDR 0110 offset6DR BaseR

LEA 1110 PCoffset9DR

NOT 1001 DR SR 111111

RET 1101

RTI 1000 000000000000

STR 0111 offset6SR BaseR

TRAP 1111 trapvect80000

ST

STI

0011 PCoffset9SR

1011 PCoffset9SR

PCoffset11

1100 0 00000000 111 reserved

JSRR 0100 0 00000000 BaseR

LC3-1
Page 16

© 2006ECE 238L

0

Anatomy of an Instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 1 0 0 0 0 1 1 0

Op-Code
(tells what the
instruction is)

Meaning of remaining
12 bits depends on the

Op-Code

This is a 16-bit instruction format.
The instruction always fills one 16-bit word.

LC3-1
Page 17

© 2006ECE 238L

A Note About Register Notation
We will often write things like this:

R6 = R5 + R3

What we mean is:
the result of adding the contents of R5 to the contents of R3
is stored into R6

What does this mean?
R6 = R5 + 7

the result of adding the contents of R5 to the integer 7 is
stored into R6

LC3-1
Page 18

© 2006ECE 238L

The Instruction Set
LC-3 has 16 instructions
Three types of instructions

Operate instructions
• operate on data (ADD R6, R2, R5)

Data movement instructions
• memory <=> registers (LDR R2, R3, #6)
• memory/registers <=> input/output devices

Control instructions
• change which instruction is executed next (JMP R3)

LC3-1
Page 19

© 2006ECE 238L

The Operate Instructions

DR = SR1 + SR2

DR = SR1 + SIGNEXTEND(imm5)

DR = SR1 AND SR2

DR = SR1 AND SIGNEXTEND(imm5)

DR = NOT(SR1)

ADD 0001 DR SR1 00 SR20

ADD 0001 DR SR1 imm51

AND 0101 DR SR1 00 SR20

AND 0101 DR SR1 imm51

NOT 1001 DR SR 111111

LC3-1
Page 20

© 2006ECE 238L

An Operate Instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1

Op-Code
(tells what the
instruction is)

SR1 - tells
where the

1st operand
comes from

SR2 - tells
where the

2nd operand
comes from

DR - tells
where the
result is
stored

This is a 16-bit instruction format -
the instruction fills a 16-bit word.

Not all bits have meaning in this particular instruction.

ADD R6 R2 R5

R6 = R2 + R5

ADD R6 R2 R5

unused
in this

instruction

LC3-1
Page 21

© 2006ECE 238L

The Data Movement Instructions

LDI 1010 DR

LDR 0110 offset6DR BaseR

LEA 1110 PCoffset9DR

STR 0111 offset6SR BaseR

ST

STI

0011 PCoffset9SR

1011 PCoffset9SR

DR = mem [PC + (sign extended) PCoffset9]

DR = mem [mem [PC + (sign extended) PCoffset9]]

DR = mem [BaseR + (sign extended) offset6]

DR = PC + (sign extended) PCoffset9

mem [PC + (sign extended) PCoffset9] = SR

mem [mem [PC + (sign extended) PCoffset9]] = SR

mem [BaseR + (sign extended) offset6] = SR

LD 0010 PCoffset9DR

PCoffset9

LC3-1
Page 22

© 2006ECE 238L

An LDR Instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0

Op-Code
(tells what the
instruction is)

DR - tells
where the

value fetched
from memory

will be
placed

BaseR - tells
where the

base
address

comes from

Offset6 - is added to
contents of BaseR to

get the memory
location to fetch from

This requires the computation of an effective memory
address. It is base + offset. The contents of R3 are the
base address and 6 is the offset.

LDR R2 R3 6

LDR R2 R3 6

EffectiveMemoryAddress <= R3 + 6
R2 = MEM[EffectiveMemoryAddress]

Offset is sign-extended
before being added to base

LC3-1
Page 23

© 2006ECE 238L

Control Instructions

BR 0000 n z p PCoffset9

JSR 0100 1

JSRR 0100 0 BaseR

RET 1100

RTI 1000 000000000000

TRAP 1111 trapvect80000

PC = PC + (sign extended) PCoffset9
depending on condition(s)

R7 = PC
PC = PC + (sign extended) PCoffset11

R7 = PC
PC = BaseR

PC = R7

Probably won’t have time

JMP 1100 000000

00

BaseR PC = BaseR

PCoffset11

000000

000000

111000

000

Different name,
instructions…

LC3-1
Page 24

© 2006ECE 238L

A JSRR Instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Op-Code
(tells what the
instruction is)

BaseR - tells
where the

base
address

comes from

This is how a subroutine call would be executed.

JSRR R3

JSRR R3

R7 <= PC
PC <= R3

unused
in this

instruction

unused
in this

instruction

Specifies JSRR
as opposed to JSR

LC3-1
Page 25

© 2006ECE 238L

A JMP Instruction
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

Op-Code
(tells what the
instruction is)

BaseR - tells
where the

base
address

comes from

This is how a GOTO statement would be executed.

JMP R3

JMP R3

PC <= R3

unused
in this

instruction

unused
in this

instruction

LC3-1
Page 26

ECE 238L

The LC-3 Architecture

A More Detailed Look

LC3-1
Page 27

© 2006ECE 238L

The LC-3 - Global Bus
A bus

Common data highway
• multiple on-ramps and off-ramps

Most data transfers between units go
across the bus

• Example: PC => MAR
• Example: MDR => IR

A tri-state driver
Can drive 1’s and 0’s on the bus
Can disconnect from the bus

Control unit turns them on and off

IR

ALU

PC

AB

LC3-1
Page 28

© 2006ECE 238L

The LC-3 - Instruction Register (IR)
The IR

During a fetch the IR is loaded from
the bus

Control unit controls when it should
be loaded

Its fields are pulled apart and fed to
many places in the circuit

• op code
• source/destination registers
• immediate data
• offsets

IR

PC

ALU
AB

LC3-1
Page 29

© 2006ECE 238L

The LC-3 - Registers
The register file

8 words of 16-bits each
R0-R7

Two read address ports

One write address port

Control unit generates control
and address signals

to read register file
to write back into the
register file

IR

PC

ALU
AB

LC3-1
Page 30

© 2006ECE 238L

The LC-3 - ALU
The ALU

Does the arithmetic and logical
operations on the data
It is always working, results are only
stored away at the right time

One input always comes from
register file (a)
Second input has two sources

register file (b)
imm5 from instruction (c)

- always sign extended (d)
Bit 5 of IR selects 2nd input (e)
Control unit tells ALU which
operation to perform (f)

ab

c

d e

f

IR

PC

ALU
AB

LC3-1
Page 31

© 2006ECE 238L

The Operate Instructions

DR = SR1 + SR2

DR = SR1 + SIGNEXTEND(imm5)

DR = SR1 AND SR2

DR = SR1 AND SIGNEXTEND(imm5)

DR = NOT(SR1)

ADD 0001 DR SR1 00 SR20

ADD 0001 DR SR1 imm51

AND 0101 DR SR1 00 SR20

AND 0101 DR SR1 imm51

NOT 1001 DR SR 111111

LC3-1
Page 32

© 2006ECE 238L

ADD 0001 DR SR1 00 SR20

ADD 0001 DR SR1 imm51

AND 0101 DR SR1 00 SR20

AND 0101 DR SR1 imm51

BR 0000 n z p PCoffset9

JSR 0100 1

JMP 1100 0 00000000 BaseR

LD 0010 PCoffset9DR

LDI 1010 PCoffset9DR

LDR 0110 offset6DR BaseR

LEA 1110 PCoffset9DR

NOT 1001 DR SR 111111

RET 1101

RTI 1000 000000000000

STR 0111 offset6SR BaseR

TRAP 1111 trapvect80000

ST

STI

0011 PCoffset9SR

1011 PCoffset9SR

PCoffset11

1100 0 00000000 111 reserved

JSRR 0100 0 00000000 BaseR

The LC-3 - EAB

LC3-1
Page 33

© 2006ECE 238L

ADD 0001 DR SR1 00 SR20

ADD 0001 DR SR1 imm51

AND 0101 DR SR1 00 SR20

AND 0101 DR SR1 imm51

BR 0000 n z p PCoffset9

JSR 0100 1

JMP 1100 0 00000000 BaseR

LD 0010 PCoffset9DR

LDI 1010 PCoffset9DR

LDR 0110 offset6DR BaseR

LEA 1110 PCoffset9DR

NOT 1001 DR SR 111111

RET 1101

RTI 1000 000000000000

STR 0111 offset6SR BaseR

TRAP 1111 trapvect80000

ST

STI

0011 PCoffset9SR

1011 PCoffset9SR

PCoffset11

1100 0 00000000 111 reserved

JSRR 0100 0 00000000 BaseR

The LC-3 - EAB

LC3-1
Page 34

© 2006ECE 238L

ADD 0001 DR SR1 00 SR20

ADD 0001 DR SR1 imm51

AND 0101 DR SR1 00 SR20

AND 0101 DR SR1 imm51

BR 0000 n z p PCoffset9

JSR 0100 1

JMP 1100 0 00000000 BaseR

LD 0010 PCoffset9DR

LDI 1010 PCoffset9DR

LDR 0110 offset6DR BaseR

LEA 1110 PCoffset9DR

NOT 1001 DR SR 111111

RET 1101

RTI 1000 000000000000

STR 0111 offset6SR BaseR

TRAP 1111 trapvect80000

ST

STI

0011 PCoffset9SR

1011 PCoffset9SR

PCoffset11

1100 0 00000000 111 reserved

JSRR 0100 0 00000000 BaseR

The LC-3 - EAB

LC3-1
Page 35

© 2006ECE 238L

ADD 0001 DR SR1 00 SR20

ADD 0001 DR SR1 imm51

AND 0101 DR SR1 00 SR20

AND 0101 DR SR1 imm51

BR 0000 n z p PCoffset9

JSR 0100 1

JMP 1100 0 00000000 BaseR

LD 0010 PCoffset9DR

LDI 1010 PCoffset9DR

LDR 0110 offset6DR BaseR

LEA 1110 PCoffset9DR

NOT 1001 DR SR 111111

RET 1101

RTI 1000 000000000000

STR 0111 offset6SR BaseR

TRAP 1111 trapvect80000

ST

STI

0011 PCoffset9SR

1011 PCoffset9SR

PCoffset11

1100 0 00000000 111 reserved

JSRR 0100 0 00000000 BaseR

The LC-3 - EAB

LC3-1
Page 36

© 2006ECE 238L

The LC-3 - EAB
The EAB

Calculates effective addresses for
the MAR and the PC

It adds two operands that are selected
by the control unit (a)
One operand is zero or a sign
extended field from the
IR (10:0, 8:0, or 5:0) (b)
The other operand is the current
value of the PC or the contents of a
register from the register file (c)
The sum is passed to both the
PCMUX and the MARMUX as
an effective address (d) IR

PC

ALU

a

b c

d

AB

LC3-1
Page 37

© 2006ECE 238L

The LC-3 - PC and PCMUX
The Program Counter

During the fetch and at the end of
some control instructions, the PC is
updated to point to the next
instruction to be executed

New PC Computation
Can be PC+1 (a)
Can come from global bus (b)
Can come EAB (c)

IR

PC

ALU

a

b

c

AB

LC3-1
Page 38

© 2006ECE 238L

The LC-3 - PC and PCMUX
Control unit controls loading of PC

selects which value it should load (a)
tells when PC should load a new
value (b)

Control unit tells PC when to
drive onto global bus (c)

IR

ALU

a

b

c

PC

AB

LC3-1
Page 39

© 2006ECE 238L

The LC-3 - MARMUX
The MARMUX

Selects what address is driven onto
global bus for loading into the MAR

MARMUX Sources
Can be IR7:0 zero extended (a)

• for TRAP instructions
Can be output of EAB (b)

• for base+offset

Control unit selects source (c),
controls driving it out onto
global bus (d), and when MAR
is loaded (e)

a b

c

d e

IR

ALU

PC

AB

LC3-1
Page 40

© 2006ECE 238L

The LC-3 - N, Z, P Condition Codes
The condition code registers

1-bit each

Logic block monitors global bus
values

It continuously outputs whether
bus value is negative, zero, or
positive

Control unit controls when N, Z,
and P registers are actually loaded

They are loaded any time the
register file is written to

Control unit uses them to determine
whether or not to branch on BR

IR

ALU

PC

AB

LC3-1
Page 41

© 2006ECE 238L

The Memory
On a read:

Address comes from MAR
Data is put into MDR and then out
onto the bus

On a write:
Address comes from MAR
Data to be written comes from
MDR

Control unit tells memory when
to load MAR (a), what value to
pass through the MDRMUX (b),
when to load MDR (c), when to
drive the value in the MDR onto
global bus (d), and when to write
to memory (e).

a

b

c

e

d

IR

ALU

PC

AB

LC3-1
Page 42

ECE 238L

Data Flow

(Tracing Data And The Execution of
Instructions Through LC-3)

LC3-1
Page 43

© 2006ECE 238L

The Von Neumann Model
Fetch an instruction
Execute it
Repeat

Fetch Execute

LC3-1
Page 44

© 2006ECE 238L

Instruction Fetch
Copy the PC into the MAR (a)

Load Memory Output into
MDR (b)

Load Output of MDR into
IR (c)

Increment PC (d)

a

b

c

d

IR

ALU

PC

AB

LC3-1
Page 45

© 2006ECE 238L

Operand Selection 0001 101 010 00 1100

DR SR1 SR2ADD

Send SR1 and SR2 fields from IR
as addresses to the register file (a)

Retrieve values addressed by
SR1 and SR2 and send to
ALU for execution (b)

a

010

110

b

IR

ALU

PC

AB

LC3-1
Page 46

© 2006ECE 238L

Execute

The ALU does the addition
control unit tells it which
operation to do (ADD)

0001 101 010 00 1100

DR SR1 SR2ADD

ADD

IR

ALU

PC

AB

LC3-1
Page 47

© 2006ECE 238L

Store Result 0001 101 010 00 1100

DR SR1 SR2ADD

Send DR field from IR as address
to the register file (a)

Enable ALU output to pass
onto the bus (b)

Store ALU output into DR by
enabling register file load (c)

101

a

b

c

IR

ALU

PC

AB

LC3-1
Page 48

© 2006ECE 238L

Another Example Instruction
STR R2 R3 9
Numbers must already be in registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1

offset6 (9)
is added to contents
of BaseR to get the

memory location where
the contents of SR will

be stored

Op-Code
STR

BaseR
(R3)

SR
(R2)

mem [R3 + 9] = R2

EffectiveMemoryAddress <= R3 + 9
MEM[EffectiveMemoryAddress] = R2

LC3-1
Page 49

© 2006ECE 238L

Instruction Fetch

Same as ADD Instruction

LC3-1
Page 50

© 2006ECE 238L

STR - key parts 0111 001001010 011

STR offset6SR BaseR

Send BaseR field from IR as
address to the register file (a)

Add the contents of BaseR to
the sign extended offset6 from
the IR to form the destination
memory address for the
STR (b)

Store the generated address
into the MAR (c) a

011b

c

IR

ALU

PC

AB

LC3-1
Page 51

© 2006ECE 238L

STR - key parts 0111 001001010 011

STR index6SR BaseR

Send SR field from IR as address
to the register file (a)

Store the contents of SR to
the MDR (b)

Perform the memory write (c)

a

010

IR

ALU

PC

PASS b

c

AB

LC3-1
Page 52

© 2006ECE 238L

Another Example Instruction
BRnz LABEL
Condition Codes loaded by previous instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0

PCoffset9
Add this value (sign extended)
to the PC to calculate
address of next instruction.

Op-Code
BR p branch

if positive

if (n AND N) OR (z AND Z)
PC = PC + PCoffset9

z branch
if zero

n branch
if negative

LC3-1
Page 53

© 2006ECE 238L

What are Condition Codes ?

LC-3 contains 3 special registers
1-bit wide each
named N, Z, P (negative, zero, positive)

On some instructions, when a register is loaded with a
new value

N, Z, and P are updated to reflect the value there

Only specific instructions modify the condition codes
See back cover of 124 book to be sure

LC3-1
Page 54

© 2006ECE 238L

All Instructions

instruction sets condition codes N Z P

ADD 0001 DR SR1 00 SR20

ADD 0001 DR SR1 imm51

AND 0101 DR SR1 00 SR20

AND 0101 DR SR1 imm51

BR 0000 n z p PCoffset9

JSR 0100 1

JMP 1100 0 00000000 BaseR

LD 0010 PCoffset9DR

LDI 1010 PCoffset9DR

LDR 0110 offset6DR BaseR

LEA 1110 PCoffset9DR

NOT 1001 DR SR 111111

RET 1101

RTI 1000 000000000000

STR 0111 offset6SR BaseR

TRAP 1111 trapvect80000

ST

STI

0011 PCoffset9SR

1011 PCoffset9SR

PCoffset11

1100 0 00000000 111 reserved

JSRR 0100 0 00000000 BaseR

LC3-1
Page 55

© 2006ECE 238L

An if Statement Using BR
if (a > 0)

a = 15 ;
a = a + 1 ;LD PCOffset for aR3

BR 1 1 0 000 000 010

AND R3 R3 000001

ADD R3 R3 011111

ADD R3 R3 000011

ST PCoffset of aR3

x3000

Address

x3001

x3002

x3003

x3004

x3005

PCoffset9

LC3-1
Page 56

© 2006ECE 238L

BRnz Instruction Fetch

Same as ADD Instruction

LC3-1
Page 57

© 2006ECE 238L

BRnz - Execution 0000 1 1 0 000 000 010

BR n z p PCoffset9

Compare n and z in IR to
N and Z registers

Generate branch address
PC + (sign extend) PCoffset9 (a)

Pass new address through
the PCMUX (b)

Load branch address into PC
iff the condition codes match
(c)

IR

ALU

PC

a

b

AB

b

	LC3-1����The LC-3�A Review
	Introduction
	Reference Information
	The Von Neumann Model
	The Von Neumann Model
	The Von Neumann Model
	The Von Neumann Model
	The Von Neumann Model
	The Von Neumann Model
	The Von Neumann Model
	The Instruction Set Architecture (ISA)
	Memory Organization
	Register Set
	Data Types
	LC-3 Instructions
	Anatomy of an Instruction
	A Note About Register Notation
	The Instruction Set
	The Operate Instructions
	An Operate Instruction
	The Data Movement Instructions
	An LDR Instruction
	Control Instructions
	A JSRR Instruction
	A JMP Instruction
	The LC-3 Architecture
	The LC-3 - Global Bus
	The LC-3 - Instruction Register (IR)
	The LC-3 - Registers
	The LC-3 - ALU
	The LC-3 - EAB
	The LC-3 - PC and PCMUX
	The LC-3 - PC and PCMUX
	The LC-3 - MARMUX
	The LC-3 - N, Z, P Condition Codes
	The Memory
	Data Flow
	The Von Neumann Model
	Instruction Fetch
	Operand Selection
	Execute
	Store Result
	Another Example Instruction
	Instruction Fetch
	STR - key parts
	STR - key parts
	Another Example Instruction
	What are Condition Codes ?
	All Instructions
	An if Statement Using BR
	BRnz Instruction Fetch
	BRnz - Execution

